Channel Openings Are Necessary but not Sufficient for Use-dependent Block of Cardiac Na+ Channels by Flecainide
نویسندگان
چکیده
Na(+) channel blockers such as flecainide have found renewed usefulness in the diagnosis and treatment of two clinical syndromes arising from inherited mutations in SCN5A, the gene encoding the alpha subunit of the cardiac voltage-gated Na(+) channel. The Brugada syndrome (BrS) and the LQT-3 variant of the Long QT syndrome are caused by disease-linked SCN5A mutations that act to change functional and pharmacological properties of the channel. Here we have explored a set of SCN5A mutations linked both to BrS and LQT-3 to determine what disease-modified channel properties underlie distinct responses to the Na(+) channel blocker flecainide. We focused on flecainide block that develops with repetitive channel activity, so-called use-dependent block (UDB). Our results indicate that mutation-induced changes in the voltage-dependence of channel availability (inactivation) may act as determinants of flecainide block. The data further indicate that UDB by flecainide requires channel opening, but is not likely due to open channel block. Rather, flecainide appears to interact with inactivation states that follow depolarization-induced channel opening, and mutation-induced changes in channel inactivation will alter flecainide block independent of the disease to which the mutation is linked. Analysis of flecainide block of mutant channels linked to these rare disorders has provided novel insight into the molecular determinants of drug action.
منابع مشابه
Channel Openings Are Necessary but not Sufficient for Use-dependent Block of Cardiac Na Channels by Flecainide: Evidence from the Analysis of Disease-linked Mutations
Na channel blockers such as flecainide have found renewed usefulness in the diagnosis and treatment of two clinical syndromes arising from inherited mutations in SCN5A, the gene encoding the subunit of the cardiac voltage–gated Na channel. The Brugada syndrome (BrS) and the LQT-3 variant of the Long QT syndrome are caused by disease-linked SCN5A mutations that act to change functional and pharm...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملState-dependent Block of Wild-type and Inactivation-deficient Na+ Channels by Flecainide
The antiarrhythmic agent flecainide appears beneficial for painful congenital myotonia and LQT-3/DeltaKPQ syndrome. Both diseases manifest small but persistent late Na+ currents in skeletal or cardiac myocytes. Flecainide may therefore block late Na+ currents for its efficacy. To investigate this possibility, we characterized state-dependent block of flecainide in wild-type and inactivation-def...
متن کاملCommon Molecular Determinants of Flecainide and Lidocaine Block of Heart Na+ Channels
Flecainide (pKa 9.3, 99% charged at pH 7.4) and lidocaine (pKa 7.6-8.0, approximately 50% neutral at pH 7.4) have similar structures but markedly different effects on Na(+) channel activity. Both drugs cause well-characterized use-dependent block (UDB) of Na(+) channels due to stabilization of the inactivated state, but flecainide requires that channels first open before block develops, whereas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 120 شماره
صفحات -
تاریخ انتشار 2002